Ongoing Radio Space-Weather Science Studies Using the LOw Frequency ARray (LOFAR) and Three-Dimensional (3-D) Modelling Techniques

Mario M. Bisi (Mario.Bisi@stfc.ac.uk) (1), Richard A. Fallows (2), Charlotte Sobey (2), Tarraneh Eftekharie (2,3), Elizabeth A. Jensen (4), Bernard V. Jackson (5), Hsiu-Shan Yu (5), and Dusan Odstrcil (6,7).

(1) RAL Space, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, England, UK
(2) ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, The Netherlands
(3) University of New Mexico, Albuquerque, NM 87131, USA
(4) Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719-2395, USA
(5) Center for Astrophysics and Space Science, University of California, San Diego, La Jolla, CA, 92093-0424, USA
(6) NASA Goddard Space Flight Center, Greenbelt, MD, USA
(7) School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Drive, Fairfax, VA 22030-4444, USA.
Brief Introduction to the Multi-Site Interplanetary Scintillation (IPS) Experiment (Radio Heliospheric Imaging)

UCSD 3-D Computer Assisted Tomography

IPS Developments with LOFAR

Heliospheric Faraday Rotation (FR) Determination and Verification Developments with LOFAR

Radio Heliospheric Modelling Developments: MHD and 3-D Tomography

HELCATS WP7 – T7.1

Brief Summary
Brief Introduction to the Multi-Site Interplanetary Scintillation (IPS) Experiment (Radio Heliospheric Imaging)

Multi-Site IPS

Radio signals received at each site are very similar except for a small time-lag.

The cross-correlation function can be used to infer the solar wind velocity(s) across the line of sight (LOS).

IPS is most-sensitive at and around the P-Point of the LOS to the Sun and is only sensitive to the component of flow that is perpendicular to the LOS; it is variation in intensity of astronomical radio sources on timescales of ~0.1s to ~10s that is observed.
IPS (g-level/density)

Density Turbulence

- Scintillation index, m, is a measure of level of turbulence
- Normalized Scintillation index, \(g = m(R) / \langle m(R) \rangle \)

- \(g > 1 \rightarrow \) enhancement in \(\delta Ne \)
- \(g \approx 1 \rightarrow \) ambient level of \(\delta Ne \)
- \(g < 1 \rightarrow \) rarefaction in \(\delta Ne \)

(Courtesy of Periasamy K. Manoharan)

Scintillation enhancement with respect to the ambient wind identifies the presence of a region of increased turbulence/density and possible CME along the line-of-sight to the radio source.
UCSD 3-D Computer Assisted Tomography

Heliospheric C.A.T. Analyses: example line-of-sight distribution for each sky location to form the source surface of the 3D reconstruction.
IPS Developments with LOFAR
The LOw Frequency ARray (LOFAR)

LOFAR High-Band observes 110 MHz to ~250 MHz and LOFAR Low-Band observes ~10 MHz to ~90 MHz. Map (below) of operational (green) and upcoming (yellow) LOFAR stations across Europe. Pathfinder to the Square Kilometre Array (SKA).
IPS with LOFAR: The First CME Detection

STEREO COR2-B CME Observations

- STEREO COR2 imagery of the CME seen to be going to the South-West from this viewpoint, i.e. South and Mars/Earth-ward (to the right of each image). Left: COR2-B on 14/11/11 at 21:54:59UT and Right: COR2-B on 14/11/11 at 23:54:59UT.
STEREO-A HI imagery shows the Northern-most flank of the CME (inside the ellipse) crossing over the line of sight (*) to the radio source at the same time as the LOFAR observation of IPS.
The First CME with LOFAR…

- Observations of J1256-057 (3C279) detecting a CME with LOFAR on 17 November 2011 and (briefly) its comparison so far with other remote-sensing observations and modelling.

Fully-consistent Results!

<table>
<thead>
<tr>
<th>Model Used</th>
<th>Best Fit in Radial Velocity (km s(^{-1}))</th>
<th>Error in Radial Velocity (km s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Phi</td>
<td>342.22</td>
<td>12.00</td>
</tr>
<tr>
<td>SSEF (30°)</td>
<td>348.83</td>
<td>12.00</td>
</tr>
<tr>
<td>Harmonic Mean</td>
<td>352.35</td>
<td>11.00</td>
</tr>
<tr>
<td>Middle:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Phi</td>
<td>338.36</td>
<td>10.00</td>
</tr>
<tr>
<td>SSEF (30°)</td>
<td>343.61</td>
<td>10.00</td>
</tr>
<tr>
<td>Harmonic Mean</td>
<td>346.11</td>
<td>9.00</td>
</tr>
<tr>
<td>Rear:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Phi</td>
<td>335.83</td>
<td>9.00</td>
</tr>
<tr>
<td>SSEF (30°)</td>
<td>343.53</td>
<td>8.00</td>
</tr>
<tr>
<td>Harmonic Mean</td>
<td>348.37</td>
<td>8.00</td>
</tr>
</tbody>
</table>
Our Second Coronal Mass Ejection (CME) with LOFAR...

- Investigations are ongoing.
LOFAR Observations of IPS on 03 June 2013

20130603 : 07:50:00 : 3C147 : F06-U608

108.0 Rs at 45.9° Lat.

W-Limb
442 km s⁻¹

E-Limb
496 km s⁻¹ behind CME

146.1 Rs at 28.1° Lat.

W-Limb
522 km s⁻¹

20130603 : 08:40:00 : 3C98.2 : D605-U608

109.5 Rs at 33.0° Lat.

W-Limb
585 km s⁻¹ behind CME

20130603 : 09:26:00 : 3C67 : D605-U608

115.5 Rs at 26.3° Lat.

W-Limb
522 km s⁻¹ behind CME
Heliospheric Faraday Rotation (FR) Determination and Verification Developments with LOFAR
LOFAR heliospheric Faraday rotation (FR) observations to date are as follows…

Crab Nebula/3C144 (15 minutes of FR each time, plus 60 minutes of IPS on 02 July 2014 only):

✶ 02 July 2014 (10:40UT) – P-Point of 69 Rs, 16.2°, Heliocentric Lat. -4.4°.
✶ 11 July 2014 (10:00UT)) – P-Point of 104 Rs, 24.8°, Heliocentric Lat. -2.8°.
✶ 22 July 2014 (12:00UT) – P-Point of 146 Rs, 35.3°, Heliocentric Lat. -1.8°.

PSR J1022+1001:

✶ 13 August 2014 (13:00UT) – P-Point of 43.6 Rs, 11.6°, and an extended observation of 140 minutes split into 20-minute intervals yet to be fully investigated in terms of the context of the observation.
Combined IPS (60 minutes) and FR (15 minutes) Observations of the Crab Nebula (3C144/PSR B0531+21/PSR J0534+2200) a few Degrees North of the Ecliptic on the Sky Using LOFAR International Stations Plus the Core, Respectively, on 02 July 2014 Commencing at 10:40UT

- Work in progress – publications soon to be in preparation.
Density at Mercury from the UCSD tomography (using STELab IPS and Wind data) with the $1/R^2$ put back in (since the below image is normalised to 1 AU) provides $n = 31.9 \text{ cm}^{-3}$ (low).

Left-hand Image courtesy of the STEREO Science Center – Where is STEREO? (http://stereo-ssc.nascom.nasa.gov/cgi-bin/make_where gif)
MESSENGER data (courtesy of Dan Gershman, and Jim Raines) for context verification show a velocity \(\sim 400 \text{ km s}^{-1} \), but density information is, unfortunately, not available for this period here.
ENLIL MHD modelling using the UCSD IPS tomography as input to drive the model (IPS-driven ENLIL) as opposed to using the traditional WSA as input.

Very-preliminary results suggest this provides an improved background solar-wind environment in the MHD modelling.
LOFAR Observing Characteristics

- Central observing frequency: 149.609375 MHz ($\lambda \sim 2$ m).
- Observing bandwidth: 78.125 MHz.
- IPS analyses over 15-minute integration times (10:40UT-10:55UT) – only the first 15 minutes used here to match the time of the pulsar observation.

- Pulsar observation analysed by folding the whole data set to obtain the polarised pulse profiles and then these are modelled using an RM fitting routine.
- RM is thus calculated on the integrated 15-minute observation.
- Implications for Space-Weather forecasting at the Earth.

- LOFAR observations of IPS using the international stations yielded a velocity of around 285 km s$^{-1}$.
Preliminary RM and FR (back-of-envelope calculations)

- The observed RM was: \(-42.0571 \pm 0.02\) rad m\(^2\).
- The expected RM of the Crab (at this frequency range) is expected to be: \(-45.50848\) rad m\(^2\) (based on anti-solar observations taken during February 2014).
- The modelled ionospheric RM was: \(3.11127 \pm 0.12935\) rad m\(^2\).
- The remaining RM, assumed due to be from the slow solar wind, is: \(-0.34011 \pm 0.15589\) rad m\(^2\), i.e. \(-0.34 \pm 0.16\) rad m\(^2\) (high?).
- Thus, using \(FR = \lambda^2 RM\) (and just using the central frequency), the resulting FR is roughly: \(-1.36\) rad.
- UCSD model RM result is \(~-0.3\)° m\(^2\) (factor \(~1/57\) of LOFAR)?
- Simplification: \(RM = 0.002 \times n_e [cm^{-3}] \times B [nT] \times L [AU] \times 2\)(° m\(^2\))
 where \(L\) is the contributing integration length along line of sight
 \(= 0.002 \times 80 \times -150 \times 0.4 = -9.6° m^2 (-0.168 rad m^2)\) (high?).
Radio Heliospheric Modelling Developments: MHD and 3-D Tomography
Inclusion of *in-situ* data into the UCSD Tomography and using the Tomography Source Surface to Drive MHD Models

Model results by D. Odstrcil (GMU) ENLIL; C.-C. Wu (NRL) HAF-3DMHD; and T. Kim (University of Alabama) MS-FLUXSS.

Model Boundaries: UCSD (Kinematic) at 15 R_S, ENLIL (MHD) at 21.5 R_S, HAF-3DMHD at 40 R_S, and MS-FLUXSS (MHD) at ~54 R_S.
Note, however, that the UCSD kinematic model is both iterative and data-assimilative – these MHD models are not at present.

The IPS/\textit{in-situ} kinematic best-fit solution is the one back-projected to the necessary source-surface distance as required in each MHD model.
Propagation of Magnetic Fields to 1AU

- Other publications in preparation.
And Magnetic-Field Developments (1)

- With the ability to propagate out ambient magnetic fields from the Sun using the CSSS model, and obtain a reconstruction of B_n (as well as B_t and B_r as previously been obtained) at the Earth, we can compare with *in-situ* data as well as prepare for potential forecasting of RTN magnetic fields near the Earth. This should provide improved inputs for ENLIL and other MHD modelling. In addition, B_z can now be determined at Earth using the UCSD tomography.
And Magnetic-Field Developments (2)
And Magnetic-Field Developments (3)

(a) 2015/01/04 03 UT

(b) correlation 0.599

(c) Estimated Planetary K index (3 hour data)
And Magnetic-Field Developments (4)

(a) ACE and CSSS Field

(b) Correlation 0.357

(c) B normal field

Resolution:
Tomo = 0.5 day
ACE = 0.5 day
HELCATS WP7 – T7.1
HELCATS WP7:
Assessing the complementary nature of radio measurements of solar wind transients – Interplanetary Scintillation (IPS) (T7.1)
Task 7.1 Objectives

- Started at month 10 (February 2015) for 19.5 months equivalent effort between months 10 and 36.
- Development of a catalogue of CMEs observed using IPS during the STEREO mission time line and comparison with white-/visible-light observations where geometry allows.
- As above but for SIRs/CIRs.
- Requires HI catalogues with non-changing event IDs.
- Primary aspect: EISCAT/ESR and LOFAR individual observations used primarily in conjunction with the HI catalogues.
- Secondary aspect: where feasible and other IPS data are available (e.g. from STELab in Japan), use UCSD tomography and IPS-driven ENLIL on a case-by-case basis for a fuller comparison.
- Explore how IPS can aid to the investigations of interacting CMEs seen in the STEREO HIs.
Brief Summary
Summary

- IPS is an extremely powerful and unique technique for making heliospheric imaging observations of the inner heliosphere.

- Outlook to constraining ENLIL with improved radio heliospheric imaging which might include the background-propagated magnetic-field components: B_x, B_y, and B_z...

- IPS/FR on LOFAR is progressing very well with good solar wind/CME results, and preliminary heliospheric RM/FR determination – but much more work to be done and some help needed???

- The UCSD 3-D tomography should provide an excellent platform for obtaining 3-D magnetic-field values from combined radio observations of FR and IPS and integrating them into the current IPS, closed-loop fields, and L$_1$ *in-situ* data (and input to ENLIL).